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Molecular dynamics (MD) simulations are used in biochemistry, physics, and other fields to study
the motions, thermodynamic properties, and the interactions between molecules. Computational lim-
itations and the complexity of these problems, however, create the need for approximations to the
standard MD methods and for uncertainty quantification and reliability assessment of those approxi-
mations. In this paper, we exploit the intrinsic two-scale nature of MD to construct a class of large-scale
dynamics approximations. The reliability of these methods is evaluated here by measuring the differ-
ences between full, classical MD simulations and those based on these large-scale approximations.
Molecular dynamics evolutions are non-linear and chaotic, so the complete details of molecular
evolutions cannot be accurately predicted even using full, classical MD simulations. This paper pro-
vides numerical results that demonstrate the existence of computationally efficient large-scale MD
approximations which accurately model certain large-scale properties of the molecules: the energy,
the linear and angular momenta, and other macroscopic features of molecular motions. Published by

® CrossMark
¢

Reliability assessment for large-scale molecular dynamics approximations

AIP Publishing. https://doi.org/10.1063/1.5009431

. INTRODUCTION

Traditional molecular dynamics (MD) simulations use
Newton’s classical equations of motion, with an effective
potential that models the interactions between atoms, to
describe the evolution of molecules.!™ This standard MD
method has been applied to a variety of problems in biochem-
istry and condensed matter physics in recent years.*!!

The results obtained from these MD simulations can be
characterized, qualitatively, as the evolution of the overall posi-
tion and orientation of each molecule, plus vibrations of the
individual atoms about their average positions within each
molecule. The time scales associated with the macroscopic
bulk motions of the molecules are typically much longer than
the time scales associated with the internal atomic vibrations.
However, these very short time scale vibrations determine the
maximum time steps allowed for accurate solutions of the
classical MD evolution equations using standard numerical
methods. This fundamental fact, together with the need to
simulate extremely large complex molecules in modern bio-
chemical research, means the computational cost of perform-
ing MD simulations can be prohibitively large. Computational
cost is therefore one of the factors that drives the need to
develop approximation methods capable of obtaining reliable
simulations of those aspects of the molecular systems of
primary interest to researchers.
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Another factor that motivates the development of approxi-
mation methods for MD simulations is the well-known fact that
typical n-body systems exhibit chaotic behavior in which expo-
nentially divergent evolutions result from small perturbations
of initial conditions.!? It is simply impossible, and therefore
pointless to attempt, to simulate all the details in the evolutions
of complex molecular systems. Many large-scale properties
of such systems, including statistical time averages of vari-
ous properties, are nevertheless well defined>'>'# and these
properties are therefore in principle observable and simulat-
able. These macroscopic characteristics include the positions,
average velocities, and other time averages of thermodynamic
quantities.

Given these two motivating factors—the need for greater
computational efficiency and the fundamental inability to sim-
ulate chaotic dynamics in complete microscopic detail—we
have developed a new class of large scale MD approxima-
tions. We construct these approximations by starting with
a new representation of the exact traditional MD equations
of motion. The standard MD equations generally use the
Cartesian coordinates of the location of each atom as the
primary dynamical variables. We transform these Cartesian
variables into a new representation that separates the macro-
scopic location and orientation of each molecule, from the
internal degrees of freedom that represent the molecular vibra-
tions. This transformation is (loosely) motivated by Wil-
son’s representation of the internal degrees of freedom of a
molecule by normal modes.'3 Our approach differs from Wil-
son’s, however, by providing an exact representation of the
molecular motions even when the mode amplitudes are not
small. We test this new mode-basis description of MD by
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comparing the results of numerical simulations using it with
those based on the standard classical MD equations. The
results of these numerical tests, described in more detail in
Sec. III B, confirm that our new mode-basis representation of
MD is exact.

In our mode-basis representation of MD, the large-scale
degrees of freedom are cleanly separated from the collec-
tion of mode amplitudes that describe the internal vibration
degrees of freedom of the molecule. It is straightforward to
replace the exact equations that determine the evolution of
these mode amplitudes, with various approximate expressions.
For example, the mode amplitudes could be chosen to sat-
isfy the analytic sinusoidal-in-time expressions derived from
the small-amplitude normal-mode equations. Another possi-
bility would be to use the normal-mode sinusoidal-in-time
expressions for some number of the highest frequency modes,
while evolving the remaining lower frequency mode ampli-
tudes numerically using the exact evolution equations. This
approach would be qualitatively similar to that used in the
constraint algorithms like SHAKE and RATTLE.!®!” Another
possibility would simply be to ignore the internal degrees of
freedom of the atoms completely by setting the mode ampli-
tudes equal to zero, i.e., to their expected long time scale
averages. We present numerical tests that compare different
approximations of this type with the results of the exact MD
evolutions. The results of these numerical tests are described
in more detail in Sec. III C.

We assess the reliability of our new large-scale approx-
imation methods by applying the techniques of uncertainty
quantification (UQ).!322 Here we focus attention on mea-
suring the accuracy of our new large-scale approximation
methods by comparing them to standard classical MD, setting
aside other important issues such as time-stepper integration
errors, errors in the molecular interaction potential model,
errors that arise from the use of classical rather than a fully
quantum description of MD, etc. The MD evolution equations
are highly non-linear, as are the equations for our large-scale
approximations. It is possible to derive rigorous analytic math-
ematical bounds on the errors in our large-scale approximation
methods.>? However the bounds we have obtained in this way
are quite weak, and do not provide a good estimate of the
size of the actual large-scale approximation errors in practical
simulations. Therefore we focus the discussion of our UQ anal-
ysis in this paper on making detailed numerical comparisons
between full classical MD simulations and those obtained
for identical molecular systems using our new large-scale
approximations.

Since MD simulations are typically performed to esti-
mate the values of various macroscopic observables of the
molecules, we have focused our uncertainty quantification
analysis on assessing the errors in the large-scale approxi-
mation values of those quantities. In particular we evaluate
the errors in the energy, the linear and angular momenta, and
the errors in the positions and orientations of each molecule.
Our numerical results show that all the large-scale approxi-
mations tested here are linear momentum conserving (MC),
and consequently the positions and velocities of the molecular
centers of mass are also determined exactly. Some of our large-
scale approximations tested here also conserve energy and

J. Chem. Phys. 147, 234106 (2017)

angular momentum exactly. Angular momentum conservation
does not, however, guarantee that the orientations or angular
velocities of the molecules are determined accurately. We show
that these orientation features evolve chaotically in MD sys-
tems, and are therefore unpredictable even in full classical MD
simulations.

The remainder of this paper is organized as follows. In
Sec. II, we derive a new mode-basis representation of the
molecular dynamics evolution equations, and then use them
to derive several large-scale molecular dynamics approxima-
tions. We have implemented these equations in a numerical
MD evolution code and have used this code to evolve simple
models of several of the smaller fullerene molecules: C»g, Co,
Ceo and C7g. In Sec. III we discuss the results of our numerical
simulations of these molecules using both standard classical
MD and several large-scale approximations, highlighting the
uncertainty quantification of the macroscopic properties of
these molecules. We conclude by summarizing and discussing
our results briefly in Sec. IV.

Il. CLASSICAL MOLECULAR DYNAMICS

Classical molecular dynamics (MD) uses Newton’s equa-
tions to describe the motions of the atoms (represented as
point particles) that make up the molecules being studied.
We use the notation X4 () to denote the Cartesian coordinates
of the location of atom A as a function of time. The clas-
sical MD equations of motion for the atoms that make up
a molecule (or collection of molecules) are therefore given
by
d’%y _ OU(Xp) |
A dr? B 65€A ’ D

where my is the mass of atom A and U(Xp) is the effec-
tive potential energy function that describes the interactions
between the atoms. This potential energy will in general be
a non-linear function of the locations of all of the atoms.
Consequently the MD evolution equations, Eq. (1), are non-
linear and strongly coupled. The solutions to these equations
therefore display the typical characteristics of chaotic n-body
systems,>!314 i e., while most details of the evolution of a par-
ticular initial molecular state cannot be predicted but certain
“statistical” features of the evolution can.

In this section, we develop a new class of large-scale
approximations to the classical MD equations of motion,
Eq. (1). These new approximations are designed to provide a
more efficient way to evaluate some of the observable “sta-
tistical” or “thermodynamic” features of MD systems. We
construct these approximations in two steps. In the first step, in
Sec. IT A, we transform the exact classical MD equations into
a representation that cleanly separates some of the observable
macroscopic degrees of freedom of a molecule from the inter-
nal degrees of freedom that determine its microscopic state. We
refer to this new representation of the MD equations as a mode-
basis representation because the choice of variables used to
describe the microscopic state of a molecule is based (loosely)
on the normal-mode description of molecular vibrations.'>>*
The transformation we use to construct this mode-basis repre-
sentation is exact; however, so it is simply a change of variables
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for the classical MD system given in Eq. (1). We present the
exact MD equations of motion for the mode-basis representa-
tion in Sec. II B. The second step in the development of the
new class of MD approximations is to replace the exact mode-
amplitude evolution equations with various approximations.
We present several examples in Sec. II C that use simple ana-
lytic expressions to approximate the evolutions of some or all
of the mode amplitudes which describe the internal molecular
degrees of freedom.

A. Mode-basis representation of MD

The mode-basis representation of MD is obtained by
transforming the Cartesian coordinate variables, X4, used in
the standard representation into new variables that separate
into (i) a set that describes the macroscopic location and ori-
entation of the molecule and (ii) another set that describes
the molecules’ microscopic vibrational dynamics. The macro-
scopic location of a molecule is represented by its center of
mass, Xcp (), defined by

Xem(t) =

1
27 D maTa(0), @)
A

where M = Y amy is the total mass of the molecule.?® The
macroscopic orientation of a molecule is represented by a
time-dependent rotation matrix R(7). This matrix provides the
transformation between a reference frame fixed to and co-
moving with the molecule, and the global inertial frame used
to describe the atoms in the standard representation of MD.
We use the notation Xg4 + 6X4(¢) to denote the location of
atom A in the molecule’s co-moving reference frame, where
Xoa represents the time independent equilibrium position, and
6%4(t) represents the displacement from equilibrium (which
is not assumed to be small) of this atom. The global Carte-
sian coordinate location of atom A is determined by these
macroscopic variables—the center of mass, Xcp () and the
orientation matrix, R(#)—along with the internal dynamical
variables 0%4,

Xa(1) = Xem (1) + R(2) - [Xop + 6Xa()]. 3)

In the mode-basis representation of MD, the internal
microscopic degrees of freedom of a molecule are described
by the variables 6x4. Unfortunately these variables are not
independent, so special care must be taken to isolate the
truly independent degrees of freedom they represent. To see
this more clearly, note that in the standard MD represen-
tation, there are 3N variables, X4, needed to represent the
configuration state of a molecule having N atoms. The macro-
scopic variables introduced above, {Xcy, R}, represent 6 of
these degrees of freedom (since there is a three-dimensional
space of rotation matrices R). Consequently there can only
be 3N — 6 truly independent internal microscopic degrees
of freedom among the 3N variables 6x4. To isolate these
independent degrees of freedom, we introduce a collection
of “mode-basis” vectors E/ﬁ: , where the index u labels the
3N — 6 vectors representing those independent degrees of free-
dom. Without loss of generality, we can normalize these basis
vectors
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mA -
o=y Tk E )
where 6*” is the Kronecker delta. To ensure that the é’: are
independent from the macroscopic variables, {Xcy, R}, we
choose them to be orthogonal to any overall translation or
rotation of the molecule,

_ N Ak
0= Z e )
0= Z o ——&}' X Xoa- (6)

Appendix A explains in detail why Egs. (5) and (6) are the
conditions needed to enforce the translation and rotation invari-
ance of the eigenvectors & . - Given any collection of mode-
basis vectors satisfying Egs. (4)-(6), it is straightforward to
write down a general expression for §X4 in terms of 3N — 6
independent mode-amplitude functions A, (f),

634 = Z Au(n)er. 7
)i

Using this expression and Eq. (3), it is now possible to write
down the transformation between the mode-basis representa-
tion variables, {X¥cy, R, A}, and the Cartesian coordinates, X4
used in the standard representation of MD,

Ba(0) = Feu(+ RO - [Foa+ ) A0 . ®)
y%i

There are an infinite number of ways to choose the
mode-basis vectors, &'. One natural choice is to let &}
be the eigenvectors of the Hessian of the potential energy
function,

0 = —mpw}, &4 +Z 8x36xA ey )

The Hessian matrix, >U/dX0%,, in this equation is to be
evaluated at the equilibrium state of the molecule where
Xa = Xopa. Since the Hessian is a symmetric real matrix, the
eigenvalues 0),21 and eigenvectors é’/’; are also real. Equation (9)
is equivalent to Newton’s equation of motion, Eq. (1), for the
case of very small amplitude oscillations about its equilibrium
state. This choice of eigenvectors is therefore particularly use-
ful for isolating the individual microscopic degrees of freedom
of a molecule. The connection of these eigenvectors to the
classical normal-mode analysis of molecular vibrations'>>*
motivated our choice of the name “mode-basis” representation.
The eigenvalues wf‘ in Eq. (9) are non-negative for any stable
molecule, and except for the six zero-frequency modes that
correspond to rigid rotations and translations of the molecule,
these eigenvalues are strictly positive (generically). Since the
Hessian matrix is symmetric, the eigenvectors é X form a com-
plete basis for the 6X4 that satisfy (or in the case of degenerate
eigenvalues, can be chosen to satisfy) the orthogonality con-
ditions, Eq. (4). Appendix A shows that they also satisfy the
constraints, Egs. (5) and (6).

The standard MD equations of motion, Eq. (1), are
second-order ordinary differential equations. Therefore both
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the position X4 and the velocity 54 = dXs/dt of each atom are
needed to determine the full dynamical state of a molecule.
The analog of these velocity degrees of freedom for the macro-
scopic variables is the center of mass velocity iy = dXcp/dt,
and the time derivative of the orientation matrix dR/dr. It is
convenient and customary to express the time derivative of
the orientation matrix as an angular velocity vector, Q, in the
following way. The matrix *Q defined by

dR
R—l
dr

is anti-symmetric for any rotation matrix R. Therefore *Q is
dual to a vector €,

*Q = (10)

£ Q= ) e, (1)

k

where € is the totally anti-symmetric tensor with €,,, = 1 in
Cartesian coordinates. The time derivative dR/dt is therefore
given by

dR

= =—xQ-R (12)
or in component notation,
dR;;
— =D e Ry, (13)

kt

Using these results, we can now write down the complete
set of transformation equations between the Cartesian coordi-
nate variables, {¥4, U4 }, used in the standard representations of
classical MD, and the variables, {Xcuy, Ucum, R, fZ, Ay, d A, /dt)
used in our new mode-basis representation,

Xa(t) = Xem (1) + AZa (1), (14)
Ba(1) = Te (1) + G0 x ATa() + ) = e ( 'Ry 2", (15)
where A%y is given by !
ATA(D) = R() - [Toa + Y Au(t) é/’j] . (16)
z

B. Evolution equations for mode-basis MD

The evolution equations for the mode-basis dynamical
variables, {Xcus, R, ﬁ, A, }, are determined from Eq. (1) using
the transformation given in Eq. (8). The resulting equations
can be written in the form

d’Xcy 1 oU
= - —_— 17
dr? ; MB)?A’ an
dR
W = —*Q . R, (18)
a0 -1 -
/Y] 19
dt v (19
d’A d
=y —2” + Y TR AFR(20)

J. Chem. Phys. 147, 234106 (2017)

The tensor / and vector V that appear in Eq. (19) are functions
of {Xcm, R, Q, Ay, d Ay /dt} given by

=S (ZA) [R! (Ron + 6%1) - %
;(M)[ o + 634 - Fo
— (¥oa +0X%4) ® (R - )?OA)]a (21)

V=30 (5) o -

- Q‘A;(A )_C)()AX R_l'é
(- A%y) 30 x (R - )

- L)_C)()A X (R_ oy ):| (22)

ma axA

where X4 is given in Eq. (7). Similarly the quantities S*,
TH”, and F* that appear in Eq. (20) are functions of
{Xem, R, Q, Ay, d A, /dt} given by

SOV EINE

T =G G ey (R 2
A

HE Ez] , (23)

dQ
(R-EAV)XI

-2 R gl [(roa) -] e
;y__;AAZ &) 81(;)%)

* 25 (ReEf) | ) < 92

- 25 ([(Re2) 6] [R50 -]

— (&) - Toa) (@-9)} 25)

Thed ﬁ/dt that appears in Eqs. (24) and (25) are to be replaced
by the expression on the right side of Eq. (19). With those
replacements, the expressions on the right sides of Eqs. (17)—
(20) depend only on {Xcys, dXcar/dt, R, Q, Ay, dA, /dt).

While the derivations leading to Egs. (17)—(20) are
straightforward, they are lengthy and have not been reproduced
here in detail. Those derivations can be summarized however
as follows. Equation (17) is obtained by inserting Eq. (1) into
the second time derivative of Eq. (2). Equation (18) follows
trivially from Eqs. (10) and (11). The derivation of Eq. (19) is
more complicated. It is obtained by projecting Eq. (1) onto the
three 1ndependent generators of rigid rotations of the molecule,
i.e., the vectors g x Xoa where @is a unit vector whose direction
determines the axis of rotation. Similarly Eq. (20) is obtained
by projecting Eq. (1) onto each of the mode-basis vectors
él'.

! Finally, we note that while Eq. (18) determines the evolu-
tion of the rotation matrix R(#), solving this equation numer-
ically directly in this form is problematic. Instead it is better
to adopt some parameterization for the rotation matrices, e.g.,
using Euler angles, and then to solve numerically the differen-
tial equations implied by Eq. (18) for those parameters. In our
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numerical work, we have adopted the “quaternion” parame-
terization of rotation matrices, in which each rotation matrix
is represented by four parameters {qo, g1, g2, g3 } with q(z) + q%
+ q% + q% = 1. Appendix B describes this quaternion repre-
sentation and explicitly gives the representation of Eq. (18) in
terms of these parameters. We point out that the version of the
quaternion evolution equations used here introduces a new (so
far as we know) constraint damping mechanism that ensures
the constraint, q(z) + q% + q% + q% = 1, remains satisfied by the
numerical solution.

C. Large-scale MD approximations

Equations (17)-(20) are a well-posed system of ordinary
differential equations that give an exact representation of clas-
sical MD in terms of the mode-basis dynamical variables
{X¥cu, R, Q, A, }. The idea of our large-scale MD approxima-
tions is to use some subset of the exact equations to determine
the macroscopic degrees of freedom, {Xcy, R, ﬁ}, while using
simpler approximate equations to determine the evolution of
the internal vibrational degrees of freedom 4,,.

The most straightforward way to construct a large-scale
approximation uses Eqgs. (17)—(19) to determine {Xcy, R, ﬁ},
while replacing Eq. (20) with some approximate equation for
A,,. Perhaps the most natural approximation for A, which
we refer to as the sinusoidal mode amplitude (SMA) approx-
imation, would be to set the mode amplitudes 4,,(¢) to their
small-amplitude perturbation solution values:

Au(t) = A sin(wut + @), (26)

where w,, is the mode frequency determined from Eq. (9),
while Aﬁ and ¢, are constants that specify the amplitude
of phase of each mode. In this approximation, Eq. (26)
replaces Eq. (20) and is used to evaluate the right sides of
Egs. (17)—(19). Those equations for the macroscopic degrees
of freedom {¥cy, R, ﬁ} are then solved numerically. The sys-
tem of equations being solved numerically is therefore reduced
from ON first-order equations for the exact MD system, to
just twelve for this large-scale approximation. The use of this
approximation eliminates the need to evaluate the complicated
quantities S*”, T and F* that appear on the right side of Eq.
(20) numerically. This reduction in the number of equations
to be solved numerically, as well as the reduction in the need
to evaluate the complicated expressions that occur on the right
side of Eq. (20) considerably reduces the computational cost
of implementing the SMA approximation.

Another plausible approximation, which we refer to as
the zero mode amplitude (ZMA) approximation, simply sets
all the mode amplitudes to zero:

A1) =0. 27

We expect the long time averages of the positions of the atoms
to be their equilibrium positions Xg4. Thus we expect the time
averages of the mode amplitudes A, (¢) to be zero, as they
are for example in the SMA approximation given in Eq. (26).
This should reduce the computational cost of evaluating the
right sides of Eqgs. (17)—(19) in the ZMA approximation even
below those costs in the SMA approximation. In addition
the ZMA approximation eliminates all the short time scale
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effects associated with the molecular vibrations, so it should
be possible to use much larger time steps to determine the
macroscopic variables {Xcy, R, ﬁ} in this approximation, and
thus to reduce the computational cost even below those for the
SMA approximation.

We note that hybrid approximations can easily be con-
structed as well. In these hybrid approximations some of the
mode amplitudes are set to the SMA or the ZMA approxima-
tions given in Eq. (26) or (27), while the remaining amplitudes
are determined numerically by solving Eq. (20). This approach
might be appropriate for systems having a few modes with
oscillation time scales comparable to the time scales associated
with the macroscopic properties of the molecule. In such cases
those low frequency modes could be treated exactly while the
approximations could still be used for the majority of modes
having much shorter oscillation time scales.

Somewhat more sophisticated large-scale approximations
can also be obtained by choosing the equations of motion
for the macroscopic variables, {Xcy, R,ﬁ}, from the partic-
ular combination of the exact equations that determine the
evolution of the macroscopic linear and angular momen-
tum, Pand J , of each molecule. These quantities are defined
by

> dxs
P=m A, 28
) ma— (28)

dAX,
dr ’

j= Z maARy X (29)
A

where AXy4, defined in Eq. (14), is the position of each atom

relative to the center of mass of the molecule.”® The time

derivatives of these quantities can be written in terms of the

macroscopic variables as

dP  d%*%cu
— = , 30
dt dr? 30)
i . dQ -
& i 1
” Ja o J, (31
where Jq and Jare given by
jQ=ZmA(MA'MAI—MA®MA), (32)
A
J =" mariy x By, (33)
A
and where BA is given by
S d*A, _dA, - i
BA:;( e +27QX R-é;
+(Qe Q-G QI) - A%y (34)

If we assume the mode amplitudes A,(7) are prede-
termined by some approximate expressions, like those in
Eq. (26) or (27) for example, then Jo and J depend only
on the large scale variables dXcy/dt, R, ﬁ, but not on their
time derivatives. Equations (30) and (31) can therefore be
used to construct an alternate set of approximate evolution
equations for the large scale variables. In particular an evolu-
tion equation for the center-of-mass motion of each molecule
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can be obtained by setting the rate of change of the total
momentum equal to the total external force acting on the
molecule:
dP
ar

oU  d*Fcu
" (9)_C)A - dr?

(35)

Similarly an equation for dé/dt can be obtained by set-
ting dJ/dt equal to the total external torque acting on the
molecule:

dj oU -~ dO -

— == AuXx—= —+J. 36
dz;"a)a“dzj()

N

The resulting evolution equations for Xcy; and Q are given
by

d*em 1 ouU
=-— = 37
dr? M ; 0Xy 37
do N 1
—=~(%) j+ZAxAxE]. (38)
A

Equations (37) and (38) represent somewhat different projec-
tions of the exact MD equations, Eq. (1), than those given in
Egs. (17) and (19). Therefore Eqgs. (37) and (38) together with
Eq. (18), provide an alternate somewhat different set of evo-
lution equations for the macroscopic variables {Xcy, R,ﬁ}.
We refer to these alternate equations as the momentum con-
serving (MC) large-scale approximation. These equations can
be solved using any predetermined approximate form for the
mode amplitudes A, (#). In this paper we explore the two possi-
bilities discussed above: We refer to the momentum conserving
approximation using sinusoidal mode amplitudes, Eq. (26), as
the MCSMA approximation and the momentum conserving
approximation using zero mode amplitudes, Eq. (27), as the
MCZMA approximation.

lll. RELIABILITY TESTING

In this section, we assess the reliability of the large-
scale MD approximations introduced in Sec. II C. We do
this by comparing the values of the macroscopic variables,
{Xcm, vems R, ﬁ}, computed numerically using the exact MD
equations, with those computed using several examples of
large-scale MD approximations. We also compare how well
these various methods conserve the total energy FE, the total
momentum 13, and the total angular momentum J of each
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molecule. The remainder of this section is organized as fol-
lows. Section III A describes in detail the model problem and
the numerical methods used to solve the MD equations for
these tests. Section III B presents the results of numerical tests
that confirm that the mode-basis representation of the exact
MD equations, introduced in Sec. II B, gives the same results
as the standard Cartesian representation for this model prob-
lem. Section III C gives the results of our numerical tests for
the large-scale approximations SMA, ZMA, MCSMA, and
MCZMA introduced in Sec. II C. Finally in Sec. III D, we
compare the computational efficiency of these various methods
when applied to our model problem.

A. Model problem

We use a collection of simple molecules, the fullerenes
C20, Ca6, Cen, and Crg, to study the reliability of the large-scale
MD approximations introduced in Sec. I C. These molecules
consist entirely of trivalent carbon atoms located at the vertices
of convex polyhedra. Figure 1 illustrates the topological bond
connections between the atoms (but not the actual geometrical
shapes) of the molecules used in our tests.

We use a simplified version of the CHARMM27 model
for the potential energy function U(X4) that determines the
interactions between the atoms. This interaction potential is
given by

U=4ky Y (rep =Ly +5k0 ) (Bcos =007, (39)
bonds (CD) angles (CDE)

where L, and 6;, are the lengths and angles of equilibrium
molecular bonds in this simple model, and where r¢p and
Ocpr represent, respectively, the distance between atoms C
and D and the angle formed by the bonds between atom D
with atoms C and E,

rep = (Fc = %p) - Gc — %p), (40)
cosOcpg = (e = );IZ).VS; - xD). “41)

The sums in Eq. (39) are taken, respectively, over the col-
lection of bonds (CD) between the pairs of atoms C and
D and over the collection of angles (CDE) formed by the
bond between atoms C and D and the bond between atoms
D and E. We use the following values for the carbon-carbon
bond parameters: k, = 305 kcal/(A%/mol), L, = 1.375 A,
and 0, = 120° taken from the CHARMM?27 force field

FIG. 1. Figures show the topological bond connections for the Cag, Cag, Cgp, and C79 molecules used in our test MD simulations. Each atom is labeled
with a number that represents the value of the index A for that atom (adapted from figures produced by R.A. Nonenmacher and published in Wikipedia at
https://en.wikipedia.org/wiki/Fullerene under the Creative Commons Attribution-Share Alike 3.0 Unported license).
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parameters for these carbon-carbon bonds.?> For simplicity
in coding up our tests, we left out the standard torsion-angle
bond interactions from the potential energy. Without those
torsion-angle forces, the fullerene molecules are unstable with
our simplified interaction potential when the CHARMM?27
value is used for the bond angle force constant, g
= 40 kcal/(rad’/mol). Therefore, we have increased the value
of kg used in our tests to kg = 305 kcal/(rad%/mol) to achieve
stability. Our purpose here is to test the robustness of our
large-scale approximations. These approximations should suc-
ceed or fail independent of the details of the interaction
potential model being used, so we do not think it mat-
ters that our simplified potential model is not state of the
art.

The first step in our analysis of these molecules is to
determine their equilibrium configurations, X4, for the inter-
action potential U(X4) given in Eq. (39). We do this by find-
ing the energy minimum where dU/dX4 = 0. We use the
Fletcher-Reeves-Polak-Ribiere version of the conjugate gradi-
ent method with line minimizations to find these equilibrium
states, o4, numerically.”® Given an equilibrium state, we next
evaluate the Hessian matrix 92U /0%, X numerically for that
state and solve Eq. (9) to determine the eigenvalues w,, and
eigenvectors Zf: . We use Householder reduction to transform
0°U |dX, 0% to tridiagonal form, followed by a traditional QL
algorithm with implicit shifts to determine the eigenvalues and
eigenvectors numerically.”® These eigenvectors are then pro-
jected and normalized so they satisfy Egs. (4)—(6) to double
precision accuracy numerically.

We construct initial data for our test evolutions by choos-
ing values for the mode-basis variables {Xcys, Ucy, R, ﬁ, A,
d A, /dt} that are appropriate for a thermodynamic equilibrium
state at temperature 7. Following the equipartition theorem, we
fix the values for each of the mode-basis variables so that each
degree of freedom of the molecule has energy %kT, where
k =1.9872 x 103 kcal/(mol K) is Boltzmann’s constant. All
the tests reported here use a temperature 7' = 300 K. By choos-
ing the origin and the orientation of the Cartesian coordinate
system, we can set Xcyy = 0 and R =T at ¢ = 0 without loss
of generality. We choose Ucy and Qat 7 =0 to be vectors
whose orientations are set with a random number generator
and whose magnitudes are set by requiring the translational
and rotational kinetic energies to satisfy

kT = $M ey - Ve, (42)

=

=

kT = %ZmA [)_C)OA‘)_C)OA ﬁﬁ— (foA'ﬁ)z]. (43)
A

The mode amplitudes .4, and their time derivatives d.A,, /dt
are chosen at ¢ = 0 to ensure that each normal mode of the
molecule has energy k7,

1 2kT .
Ay w—ﬂﬂv sin gy, (44)
dA, 2kT
o - N S (45)
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where ¢, are randomly selected phases. These initial values for

{Xcm» Uemr» R, QA ,d A, /dt} are used to start the evolutions
of the exact mode-basis representation of the MD equations.
We convert them to the equivalent Cartesian representation
variables using Eqs. (14) and (15) and use those initial data
to start our exact Cartesian MD evolutions. We also use the
same initial values of {¥cys, Ucur, R, QA ,dA,/dt} to set the
initial data for the SMA and MCSMA approximation tests.
And finally we use these same values for {)?CM,JCM,R,EZ}
with A4, = dA,/dt = 0 to set the initial data for the ZMA and
MCZMA approximation tests.

All the MD simulation methods considered here con-
sist of systems of ordinary differential equations of the form
d ?/dt =F ()7, t), where Y is the n-dimensional vector consist-
ing of the dynamical fields in a particular method and F(Y, 1)
is the right side of the evolution equations for those fields. We
solve these systems numerically with the initial data Y = Y(0)
described above using an 8th order integrator by Dormand and
Prince with dynamic time step size control (see the work of
Hairer et al.?’ for details). This algorithm controls the error
in Y(1) by adjusting the time step size to keep an estimate
of the local time-truncation error below eT(|I7 | + 1) (see the
work of Hairer et al.”’ for details about this time step con-
trol). We run each simulation with several values of the time
step accuracy parameter e, in the range 10713 < ¢, < 1076
to verify that time step errors are not the dominant cause of
any differences we may see between the various MD evolution
methods.

B. Testing the exact mode-basis representation

Our first numerical tests of the model problem described
in Sec. IIT A are designed to examine the differences between
MD simulations performed with the standard Cartesian-basis
representation of the MD equations, Eq. (1), and the exact
mode-basis representation given in Egs. (17)—(20). To perform
these tests, we use the exact Cartesian-basis solution computed
with time step accuracy parameter e, = 10713 as the reference
solution with which to compare everything else. We refer to
this reference solution as )?/fef (0).

We first measure how sensitively the exact Cartesian-basis
MD evolutions depend on the time step accuracy parame-
ter €;. To do this, we evaluate the quantity &, that mea-
sures the differences between solutions computed using dif-
ferent time step accuracy parameters, €;, and the reference
solution,

1
Exler) = \/ v D Fater) - 5T (46)
A

The solid curves in Fig. 2 show &(e,) for exact Cartesian-
basis MD simulations of the C,g fullerene molecule computed
with four different values of €, = {10_6, 1078, 10710, 10‘12}.
Data points for these curves are obtained by evaluating &, at
10 ps time intervals during the evolutions. Each of these curves
begins at early times with £, ~ €, and then grows exponen-
tially until &, ~ 1 where it remains relatively constant for the
duration of the simulation. These curves confirm the expec-
tation that MD simulations are chaotic. Although the initial
data at + = O for these various runs are identical, after one
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FIG. 2. Solid curves show & computed with the exact Cartesian-basis MD
code for different values of the time step accuracy parameter €. Dashed
curves show &, for evolutions of the exact mode-basis MD code for different
€. The exponential growth in these & is caused by the chaotic nature of MD
evolutions.

time step, the solutions differ from the one specified by the
initial data, by amounts that depend on the time step accuracy
parameter €,. By definition, chaotic dynamical systems have
the property that nearby solutions diverge exponentially. Fig-
ure 2 confirms that this is what is going on by showing that
each of these evolutions of the fullerene C»¢ molecule diverges
from the reference solution at the same exponential rate. The
analogous graphs for the other fullerene molecules, C»¢, Cep,
and C7g, included in our study are very similar, except for
the time scale on which the chaotic instability occurs. In the
Cog case, the instability grows at about half the rate of the
Cy case, while the instabilities in the Cgp and the C7¢ cases
grow at two or three times the Cpg rate. The presence of
chaotic behavior in these MD simulations demonstrates why
it is impossible to compute molecular evolutions in complete
detail. Only certain macroscopic features of the evolutions,
like dynamically conserved quantities such as the energy,
momentum, and angular momentum are reproducible and
simulatable.

The dashed curves in Fig. 2 show &, for simulations based
on the exact mode-basis MD representation. We use the same
Cartesian-basis reference solution )'c’fef when computing &, for
these mode-basis simulations, and we see that the exponential
divergence from the reference solution has exactly the same
structure it has for the Cartesian-basis evolutions. The only dif-
ference is that the values of &, are somewhat larger, £, ~ 3¢,
at very early times in the mode-basis case. These differences
appear to be caused by the fact that the mode-basis equations
are much more complicated than their Cartesian-basis coun-
terparts, so the truncation errors are somewhat higher in this
case for fixed €. The rate of the exponential divergence from
the reference solution is the same as the Cartesian-basis case,
so Fig. 2 confirms that the mode-basis equations produce the
same evolutions as the standard Cartesian-basis representation
of MD. More importantly perhaps, these tests also confirm that
our codes to evolve both versions of the MD equations contain
no serious errors.
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We have also monitored how well the energy E defined
by
dXs dix
E=1 — - — + U(Xp), 47
2 (xp) (47)

the total momentum P defined in Eq. (28), and the total angular
momentum (about the center of mass) 7 defined in Eq. (29)
are conserved in these exact MD evolutions. In the absence
of external forces (like van der Waals interactions with other
molecules), these quantities should all be conserved by the
exact MD evolution equations. To monitor these conserved
quantities, we define ¢, Ep and &£; that measure the deviations
of these quantities from their initial values

_|E®) - E©)]
Ep(t) = T E0) (48)
Ep(t) = |P(t): P(0)| (49)
|P(0)]
&) = —'J([): JOI (50)
|7(0)]

The solid curves in Fig. 3 show the evolution of these energy
and momentum conservation errors for the simulations of
the Cartesian-basis representation of the MD equations. The
results in this figure represent those of the highest resolu-
tion simulations, i.e., those computed with time step error
parameter e€; = 10713, We see from these figures that each
of the conservation error quantities begins at small times with
& =~ Ep = & =~ €, which then grow slowly, roughly as a
power law in time: € « ¥, with k < 2. (The growth of trun-
cation level errors in this way is typical of explicit numerical
ordinary differential equation integrators such as the Dormand-
Prince algorithm used in our tests.) The dashed curves in
Fig. 3 show the errors in these conserved quantities for evo-
lutions of the same initial data using the mode-basis repre-
sentation of MD. The mode-basis results shown in Fig. 3
were also computed using the time step error parameter
€; = 10713, These results confirm that both versions of the

Cartesian-basis | —
Mode-basis
Cartesian-basis
Mode-basis
Cartesian-basis
Mode-basis

o

1
1
1
o

-16 . I . I . I .
0 100 200 300 400

t (ps)

FIG. 3. Solid curves show &g, Ep, and &; for evolutions using the exact
Cartesian MD code with time step accuracy €, = 10713, Dashed curves show
these same quantities for evolutions using the exact mode-basis MD code.
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exact MD equations conserve the energy, the linear momen-
tum, and the angular momentum of molecules at the level of
the numerical truncation error used.

C. Testing the large-scale approximations

In this section, we present the results of numerical tests
of the large-scale MD approximations developed in Sec. II C.
These approximations include the SMA and ZMA approxi-
mations that use a sinusoidal-in-time approximation (SMA)
or the zero approximation (ZMA), respectively, for the mode
amplitudes .4, (¢). These approximations solve the exact mode-
basis evolution Egs. (17)—(19) for {Xcy, Uewm, R, ﬁ} and sim-
ply ignore the exact evolution Eq. (20) for A4, (). We also
test approximations that use angular momentum conserva-
tion instead of Eq. (19) to determine the evolution of ﬁ(t).
The equations for these momentum conserving approxima-
tions, MCSMA and MCZMA, are given in Eqs. (37) and
(38). All the numerical results shown here use the highest
time resolution, e; = 107'3, in evolutions of the Cyq fullerene
molecule.

First we test how well these large-scale approximations
conserve the energy E, linear momentum P, and angular
momentum J during the evolutions of our model problem.
We use the quantities &g, Ep, and &, defined in Egs. (48)—(50)
to monitor conservation violations. The solid curves in Fig. 4
show the energy conservation violations & for the SMA and
ZMA approximations, while the dashed curves show these
violations for the MCSMA and MCZMA approximations. We
see that the zero mode approximations ZMA and MCZMA
conserve energy much better than the sinusoidal mode approx-
imations SMA and MCSMA. However, even these sinusoidal
mode approximations give energy conservation violations
below the 0.1% level for these test problems.

The solid curves in Fig. 5 show the linear momentum
conservation violations Ep for the SMA and ZMA approxima-
tions, while the dashed curves show these violations for the
MCSMA and MCZMA approximations. We see that linear
momentum violations £p are much smaller for MCSMA than
the SMA approximation, while its values are about the same

10° i
g —— SMA

E 10-10 | — %@MA T

— ——- MCZMA
107 |
10-14 | T
N e IS A0 v
\1 ] N N

107 — : . : .

0 100 200 300 400
t(ps)

FIG. 4. Solid curves show energy conservation violations &g for the large-
scale approximations SMA and ZMA, while dashed curves show these
violations for the MCSMA and MCZMA approximations.
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FIG. 5. Solid curves show linear momentum conservation violations Ep for
the large-scale approximations SMA and ZMA, while dashed curves show
these violations for the MCSMA and MCZMA approximations.

for the MCZMA and ZMA approximations. Figure 5 shows,
however, that linear momentum conservation is excellent for
all of these large-scale approximations.

The solid curves in Fig. 6 show the angular momentum
conservation violations &, for the SMA and ZMA approxima-
tions, while the dashed curves show these violations for the
MCSMA and MCZMA approximations. We see that angular
momentum conservation &; is much better for MCSMA than
the SMA approximation, while these violations are about the
same for the MCZMA and ZMA approximations. Not sur-
prisingly, the momentum conserving approximation MCSMA
has much better linear and angular momentum conservation
properties than SMA, and somewhat better momentum conser-
vation than the zero mode amplitude approximations MCZMA
and ZMA.

Finally, we test how well the large-scale approxima-
tions reproduce the macroscopic variables {)?CM,JCM,R,Q}
for our model problem. We use the exact mode-basis repre-
sentation with e€; = 10713 as our reference solution in this

— SMA
ZMA -
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10-20 -/ . ] . ] . I .
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FIG. 6. Solid curves show angular momentum conservation violations &; for
the large-scale approximations SMA and ZMA, while dashed curves show
these violations for the MCSMA and MCZMA approximations.
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case to test the various large-scale approximations. We eval-
uate the differences between the approximate and the exact

solutions using the quantities &,,, Ey» o, and &, defined
by

Exen = [Rem — X5, (51)
Eoen = [Bem = 75, (52)
Eo = - 64X 53

Q — W, ( )

(54)

The solid curves in Fig. 7 show errors in the center of mass
position, &, for the SMA and ZMA approximations, and
the dashed curves show these errors for the MCSMA and
MCZMA approximations. For comparison, the dotted curve
in Fig. 7 shows the error in the somewhat lower resolution,
€ = 10712, evolution of the exact mode-basis representation
compared to the reference solution. All of these errors are
very small and are only growing slowly with time, approxi-
mately like &, « 1. These graphs confirm that all the large-
scale approximations are able to determine Xy, with excellent
precision.

The solid curves in Fig. 8 show the errors in the veloc-
ity of the center of mass, &, for the SMA and ZMA
approximations, and the dashed curves show these errors for
the MCSMA and MCZMA approximations. For comparison,
the dotted curve in Fig. 8 shows the error in the somewhat
lower resolution, €; = 1072, evolution of the exact mode-
basis representation compared to the reference solution. All
of these errors are very small and appear almost constant in
time at late times. These graphs confirm that all the large-
scale approximations are able to determine Uy, with excellent
precision.

The solid curves in Fig. 9 show the errors in the orien-
tation matrix R, as measured by &,, for the SMA and ZMA
approximations, and the dashed curve shows these errors for

10_9 T T T T T T T
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h ---- MCSMA

—--- MCZMA

------ Exact Mode-Basis
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FIG. 7. Solid curves show errors in the center of mass position &y, for the
large-scale approximations SMA and ZMA, while dashed curves show these
errors for the MCSMA and MCZMA approximations. Dotted curve shows

Excyy Tor an exact mode-basis evolution with €7 = 10712,
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FIG. 8. Solid curves show errors in the center of mass velocity &y, for the
large-scale approximations SMA and ZMA, while dashed curves show these
errors for the MCSMA and MCZMA approximations. Dotted curve shows
Evcy, for an exact mode-basis evolution with €, = 10712,

the MCSMA approximation. The &, curve for the MCZMA
approximation is indistinguishable from the ZMA curve. For
comparison, the dotted curve in Fig. 9 shows the error in
the somewhat lower resolution, €; = 10712, evolution of the
exact mode-basis representation compared to the reference
solution. The exact dotted curve in Fig. 9 shows the expo-
nential growth at early times which signals the presence of
chaotic dynamics in this variable. The large scale approxima-
tions all have errors &, that are comparable to the late time
behavior of the exact MD simulation. While it may be surpris-
ing that the orientation of the molecule cannot be predicted
accurately from initial conditions of the molecule using an
exact MD simulation, it is not surprising in this case that the
large-scale approximations all give rather poor results for R as
well.

The solid curves in Fig. 10 show errors in ﬁ, as mea-
sured by &q, for the SMA and ZMA approximations, and the

T T T T T T T
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FIG. 9. Solid curves show errors in the orientation parameters &, for the large-
scale approximations SMA and ZMA, while dashed curve shows these errors
for the MCSMA approximation. The MCZMA errors are indistinguishable
from the ZMA errors in this graph. Dotted curve shows &, for an exact mode-
basis evolution with e = 10712,
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FIG. 10. Solid curves show errors in the angular velocity £q for the large-
scale approximations SMA and ZMA, while dashed curve shows these errors
for the MCSMA approximation. The MCZMA errors are indistinguishable
from the ZMA errors in this graph. Dotted curve shows £q for an exact mode-
basis evolution with e, = 10712,

dashed curves show these errors for the MCSMA approxima-
tion. The MCZMA curve for &g is indistinguishable from the
ZMA curve. For comparison, the dotted curve in Fig. 10 shows
the error in the somewhat lower resolution, €; = 107!2, evo-
lution of the exact mode-basis representation compared to the
reference solution. The exact dotted curve in Fig. 10 shows the
exponential growth signaling the presence of chaotic dynam-
ics in this variable. Given the chaos seen in the evolution of
the orientation matrix R seen in Fig. 9, it is not at all surpris-
ing that similar chaotic behavior is seen in the evolution of Q.
Thus it is not surprising that the large scale approximations all
have errors &£ that are comparable to the late time behavior
of the exact MD simulations.

In summary, all the large scale approximations do an
excellent job of conserving linear momentum. All the large
scale approximations except SMA do an excellent job of con-
serving angular momentum. The ZMA and MCZMA approx-
imations do an excellent job of energy conservation, while the
SMA and MCSMA approximations do not do so well. All of
the large-scale approximations do excellent jobs of modeling
Xcym and Ueyy. None of the large scale approximations do a
good job of modeling the macroscopic orientation variables R
and Q. Overall then, our results show that the ZMA and the
MCZMA approximations are more reliable approximations
of the exact MD equations than the SMA and the MCSMA
approximations.

D. Computational efficiency

This section briefly discusses the computational costs of
the various MD evolutions used in our tests. Figure 11 shows
the total run times (in seconds) for the exact Cartesian-basis
simulation tests performed for each of the fullerene molecules
Csp, Cr6, Ceo, and C7g. For each molecule, we ran five evo-
lutions with e, = {107, 1078, 10719, 10712, 10713}, with
each evolution simulating 400 ps of the molecular motion.
Figure 11 shows that the run times for these tests increase
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FIG. 11. Total run times in seconds for the 400 ps simulations of the fullerene
molecules Cy using the Cartesian-basis version of the MD evolution code.
Total run time includes the runs using five different values of the time step
error parameters €; = {10‘6, 1078,10710, 10712, 10‘13}.

exponentially as the number of atoms in the simulation
increases. A reasonably good approximation of these total run
times is given by fun ~ 1500 x 10V33. The code we wrote
to implement these methods was not highly optimized, so we
expect that the computational efficiency could almost certainly
be improved.

In Fig. 12, we illustrate the relative computational costs
of performing evolutions using the various versions of the MD
evolution equations discussed here. The solid curves connect
the data points that represent the ratios of the total run times
for the SMA and ZMA large-scale approximations to the total
run time for the exact Cartesian-basis evolution. The dashed
curves connect the analogous data points for the MCSMA
and the MCZMA approximations. Finally, the dotted curve
connects the data points that represent the ratios of the total
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FIG. 12. Relative run times for the various large-scale MD approximations as
functions of N the number of atoms in the simulation. Solid curves represent
the ratios of the run times of the SMA and ZMA approximations with the
run time for the exact Cartesian-basis representation. Dashed curves give the
analogous ratios for the MCSMA and the MCZMA approximations. Dotted
curve gives the ratio of the run times for the exact mode-basis representation
to the exact Cartesian-basis representation.
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run times for the exact mode-basis MD representation to the
total run time for exact Cartesian-basis representation. These
results show that computations using the SMA and MCSMA
approximations are about twice as fast as those using the exact
Cartesian-based representation, while the ZMA and MCZMA
approximations are more than 25 times faster. The dotted curve
in Fig. 12 shows that computations using the exact mode-basis
representation of MD are two or three times slower than the
exact Cartesian-basis representation. On the basis of compu-
tational efficiency, the MCZMA large-scale approximation is
by far the best of the various MD simulation methods tested
here.

IV. DISCUSSION

We have developed a new mode-based representation
of the classical MD equations of motion that separate the
macroscopic position and orientation degrees of freedom of a
molecule from the internal vibrational degrees of freedom. We
have confirmed through our numerical tests that most details
of a molecular dynamical state evolve chaotically, includ-
ing the large scale orientation and angular velocity of the
molecule. Consequently those features cannot be predicted
accurately even with exact MD simulations. We have derived
a number of new large-scale approximations (based on our
new mode-based representation) specifically designed to sim-
ulate accurately those features of MD evolutions that are not
chaotic. We have shown through a series of careful numerical
tests that some of these large-scale approximations give reli-
able, accurate predictions for the macroscopic properties of
molecular motions, including the energies, linear and angular
momentum, and the positions and velocities of their cen-
ters of mass. We find that one of these new approximations
(MCZMA, the best of these new large-scale approximations
studied here) is more than 25 times faster than our exact
Cartesian-basis MD code, while giving comparable accuracy
for the large-scale molecular properties. We also note that the
MCZMA approximation does not depend on the mode basis
vectors E;(‘ at all, which makes it very easy to implement
numerically. Thus we conclude that there are many reasons
to use reliable well-tested approximations for MD simulations
rather than performing simulations using the full exact MD
equations.

The tests done for this study focused on simulations of
the dynamics of single molecules. The formalism created here
has been designed, however, to accommodate simulations of
collections of molecules in a straightforward way. The only
change that needs to be made, as we noted earlier, is to change
the single index A used to identify individual atoms to a pair
of indices mA, where the first index m determines to which
molecule the particular atom belongs. Macroscopic proper-
ties of the molecule like the energy, E, linear and angular
momenta, PandJ , and the position and velocity of the center
of mass, Xcy and ¢y, should also acquire indices to iden-
tify to which molecule they belong: {E,,, f’m, jm, XcMm> Vcvm -
Then, by including van der Waals and/or Coulomb forces in
the interaction potential U(X,,4), it would be possible to study
interactions between molecules using any of the large-scale
approximations introduced here. The interactions modeled in
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this way should be essentially identical to those interactions
in an exact MD simulation.
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APPENDIX A: NORMAL MODE BASIS

One natural choice for the mode-basis vectors é’: is
the eigenvectors of the Hessian of the potential energy
function

0= —mAa) (A1)

A Z 8x36xA 3

where 92U /dXpd%, in this equation is to be evaluated at the
equilibrium state of the molecule where X4 = Xo4. Since the
Hessian is a symmetric 3N X 3N dimensional real matrix,
the eigenvalues “’/21 and eigenvectors ¢ : are also real, and the
collection of eigenvectors form a complete basis for the 3N
dimensional space of vectors. Equation (A1) is equivalent to
Newton’s equation of motion, Eq. (1), for the case of very
small amplitude oscillations about its equilibrium state, so we
call these é’/’; the normal-mode basis. For stable molecules, the
normal-mode frequencies are real, so all the eigenvalues of
such systems are non-negative: wfl > 0.

The zero-frequency modes of a molecule are represented
by the eigenvectors of the Hessian matrix of the equilibrium
potential energy function having zero eigenvalues,

2
0= Z G Utoc) (A2)
0%40%p “p
We will now show that the eigenvectors corresponding to over-
all rigid translations and rotations of the molecule are zero
frequency modes.

We assume that the equilibrium state of the molecule is
invariant under rigid spatial translations and rotations. This
assumption makes sense to ensure that the equilibrium state
of interest to us is the one where the molecule is isolated
and does not interact with its large scale environment. If the
molecule is invariant under translations, then the forces acting
on the individual atoms must also be invariant. In its equilib-
rium state, the total force acting on each atom must vanish;
therefore, the gradient of the potential energy function must
vanish

_ aU()_C)oc) _ OU(Xoc + A7)

0 =
0%y 0%4

; (A3)

where 7 is an arbitrary vector that describes the same trans-
lation for all the atoms in the molecule, and where A is an
arbitrary parameter that determines the magnitude of the trans-
lation. We can express the forces acting on each atom of a
molecule that has been translated by an infinitesimal amount
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using a Taylor series expansion

0= OUXpc + AT)
B AN
6U(xoc) *U(Foc) . 2
+A A9). A4
e E]amaB 7+0(1%).  (Ad)

The first term on the right side of Eq. (A4) vanishes because
of the equilibrium condition, Eq. (A3). Therefore, the sec-
ond term on the right side of Eq. (A4) must also vanish for
all values of A. It follows that any vector 7 that is the same
for all the atoms in a molecule is a zero-frequency eigen-
vector,

(AS5)

The argument for the rotational invariance of the equi-
librium state of the molecule is similar. Let R(1) denote a
one-parameter family of rotation matrices. We assume that
A = 0 corresponds to the identity rotation: R(0) = I. The
rotational invariance of the equilibrium state of the molecule
implies that

dU[Xoc] _ OUIR(Q) - Foc]

= = . A
0 0Xa 0X4 (A6)

As before, we perform a Taylor expansion of the expression
for the forces acting on an equilibrium molecule that has been
rotated an infinitesimal amount,

0= M (A7)
6xA

_ aU[)_C)UC i1 Z x()C] @
(3)_C,A BxABxB dA

. )_C)()B + O(/lz).
=0

(A8)

The derivative of any rotation matrix iS an antisymmetric
matrix. In this case, this matrix can be written as

- =- Z €ijk bk
3

da
where the vector § determines the direction and magnitude
of the infinitesimal rotation. It follows that Eq. (A8) can be
re-written as

(A9)

=0

(6 x Zop) + O(A?). (A10)

The first term on the right side of Eq. (A10) vanishes because
of the equilibrium condition, Eq. (A6). Therefore, the second
term on the right side of Eq. (A10) must vanish for all values
of A. It follows that any vector of the form g x Xoa, where g is
the same for all the atoms in a molecule, is a zero-frequency
eigenvector

0= Z 5 U[X()C 5 X()B)

All
aanxB ( )

The eigenvectors of the zero frequency modes (for generic
molecules) therefore consist of rigid translations

el =1, (A12)

where 7 is a constant vector that determines the magnitude and
direction of the translation and rigid rotations,
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&/ (6) = b x Zoa, (A13)
where @ is a constant vector that determines the axis and
magnitude of the rotation.

It is easy to show from Eq. (A1) that two eigenvectors, é’f“

and &}, having different eigenvalues, w}; # wy, are orthogonal
in the sense that,
_ ma SU sy
0= Z ﬁ e A e A
A

It follows that the translations é,(7) = 7 and rotations ¢, )

(A14)

= § x %a will be orthogonal to all of the non-zero frequency
mode eigenvectors e . These orthogonality conditions are

given by
MA Ly ¢, ma N
0=ZMej;~eA’(r) Mej; 7, (A1)
mao_u o2
0= ;ﬁg‘-q{(@)
=—Z DA @ xFon) - 6. (A16)

These orthogonality conditions will hold for arbitrary values
of the vectors 7 and 6. Therefore these conditions can also be
written in the form

o= 3 e = 3

These conditions must hold for each non-zero frequency mode
u and therefore demonstrate that the constraints on the mode-
basis eigenvectors given in Eqs. (5) and (6) are satisfied by the
normal-mode basis vectors.

X foA. (A17)

APPENDIX B: QUATERNION REPRESENTATION
OF R(t)

The differential equation that determines the rotation
matrix R(?),

dR;;
d_tU = _Zfikf Q'Ryj. B1)
%

can be integrated numerically directly. Unfortunately the accu-
mulation of truncation and roundoff errors in this direct
approach inevitably produces a solution that is no longer a
rotation matrix, and there is no reliable way to project out
these errors to retrieve the correct R(7). A better approach is to
adopt some parametric representation of the three-dimensional
space of rotation matrices and then to convert Eq. (B1) into a
system of equations for the evolution of those parameters, and
finally to integrate that parametric representation numerically.
For example, one common representation of the rotation matri-
ces uses the Euler angles as parameters. Since the Euler angle
representation is not one to one (at a few singular points), a
better representation uses unit quaternions which do provide a
one to one representation. We use the quaternion representa-
tion for our numerical solutions of R(z). Let g represent the
real part and ¢, ¢2, and g3 represent the three independent
imaginary parts of a quaternion with

)+ g1 + @5 () + q3(1) = 1. (B2)
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This equation defines a unit three-sphere in this parameter
space, so the space of possible parameter values is three-
dimensional. A general rotation matrix R can be written in
terms of these quaternion parameters in the following way:

BAE -3 qa2—-d0q3 9193 + qog>
R=2qiqx+q095 q+43—% @43 —qoqi | (B3)
90193 — Q042 @93 +qoq1  Gatqr— %

It is then straightforward to transform the rotation matrix
evolution Eq. (B1) into an equation for the evolution of the
quaternion parameters. The result is

% = —%(qul + Qg2 + Q.q3), (B4)
W0 (g0 + 205 - 0., (B5)
@ = $(—Qq3 + Quqo + Q.q1), (B6)
@ = 3(Quq2 — Qg1 + Q:q0). (B7)

Given a solution to these equations for go(t), g1(t), g2(¢), and
q3(t), it is easy to reconstruct the rotation matrix R(#) using
Eq. (B3).

The constraint,

Czq(z)+q%+q§+q§—l, (BY)

which measures how well the quaternion parameters remain on
the unit three-sphere, is preserved by the evolution defined by
Egs. (B4)—(B7). In particular, these evolution equations imply

“°

dt
Solving Egs. (B4)—(B7) numerically will nevertheless result
in truncation level violations of this constraint, so it iS neces-
sary to re-scale the solution periodically to ensure that C = 0.
Without this re-scaling, R(#) constructed using Eq. (B3) will
not be a rotation matrix.

The numerical solution of Egs. (B4)-(B7) can be
improved by adding constraint damping terms to the system.
These extra terms vanish whenever the constraints are satis-
fied, thus leaving the desired solutions unchanged. But these
constraint damping terms are chosen to drive the solution
back toward the constraint satisfying surface whenever small
numerical constraint violations inevitably occur. The result-
ing quaternion evolution equation with constraint damping is
given by

(B9)

% = —5(Quq1 + Q92 +2q3) ~ g qoC. (BO)
@ = 3(Quqo + Qg3 - Qq2) - g 191 C, (B11)
dq;t(l) = 3(-Qq3 + Qugo + .q) - §1q2C,  (B12)
% = 2(Qq2 — Qg1 + Qq0) — 193 C. (B13)

These equations imply the following evolution equation for
the constraint:

J. Chem. Phys. 147, 234106 (2017)

dcC
i +1)C

which drives constraint violations C toward zero exponentially
on a time scale set by the constant 7 when i > 0. This is the
form of the rotation matrix evolution equations used in all of
our numerical solutions of the various representations of the
MD equations.

(B14)
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